

www.kesoftware.com
© 2010 KE Software. All rights reserved.

Vitalware Documentation

Encrypted Connections
Document Version 1

Vitalware Version 2.2.01

Contents

S E C T I O N 1 Encrypted Connections 1
How it works 2
Requirements 5
Vitalware server setup 6

Important! 6
Vitalware client setup 7
TexJDBC setup 8

S E C T I O N 2 Generating certificates 11
Self signed 12

Step 1: Generate a private key 12
Step 2: Generate public digital certificate 12
Step 3: Installing the files 14

Root signed 16
Step 1: Generate a private key 16
Step 2: Generate a certificate signing request 16
Step 3: Installing the files 17

Chain signed 18
Step 1: Generate a self signed CA certificate 19
Step 2: Generate a private key 19
Step 3: Generate a certificate signing request 19
Step 4: Sign the certificate with your CA certificate 20
Step 5: Creating the certificate chain 20
Step 6: Installing the files 21

S E C T I O N 3 Configuring ciphers 23
Server 24
TexAPI/texapi.pm 24
TexJDBC 25

S E C T I O N 4 Common Errors 27
Client does not support SSL 28
Server certificates not installed 28
Server/Client protocol error 29
Cannot verify certificate 29
Bad host name 30

Index 31

Encrypted Connections

Encrypted Connections

S E C T I O N 1

Encrypted Connections
When using Vitalware over public networks it may be desirable to encrypt all data
transferred between the Vitalware client and server. Vitalware 2.2.01 has been
extended to support an encrypted connection between the client and server programs.
The encrypted connection uses TLS v1.0 (Transport Layer Security) for the
transmission of data, ensuring data integrity and security. The use of data encryption
is optional and is not required for internal networks where the risk of unauthorized
access to data is minimal. The Vitalware server may also be configured to accept
connections only from clients who request data encryption. This provides system
administrators with the ability to enforce data encryption, or not, as required.

1

Encrypted Connections

2

Encrypted Connections

How it works
The TLS v1.0 protocol uses Public Key Infrastructure (PKI). A key is a sequence of
bytes, normally 40, 56, 64, 128 or 265 bits in length, which is used by a cipher (an
encryption algorithm) to encrypt data. Using the same cipher with different keys will
produce different output. Hence, the key is used to "lock" the encrypted data. In order
to unlock the data, that is decrypt it, the right key is required. With public/private key
infrastructure two keys are generated, a public key and a private key. Data encrypted
with the public key requires the private key in order to be decrypted and data
encrypted with the private key requires the public key in order to be decrypted. In
other words the keys are symmetrical.

The private key must be kept safe to ensure data privacy. If someone has both the
private and public keys, they can decrypt the data and so compromise data security.
The public key may be made available to anyone without compromising security as
the private key is required to decrypt data encrypted using the public key. The public
key is wrapped in a digital certificate, which consists of:

• Public Key
• Subject - details about the owner of the certificate.
• Serial Number - unique number used to identify the certificate.
• Issuer - details about who verified and issued the certificate.
• Valid Dates - start and end dates for which the certificate is valid.
• Key Usage - purpose(s) for which the public key may be used.
• Thumbprint - a check-sum to ensure the certificate has not been modified.

In order for a digital certificate to be valid it is necessary to verify the details of the
Issuer. A small number of companies are allowed to issue valid and verifiable
certificates. When you want a public digital certificate you approach one of these
companies and they verify your details before issuing your public digital certificate.
They sign your certificate with their own private key, making them the Issuer. In
order to read your digital certificate you need the Issuer's public key. The key is
embedded in their digital certificate which is available freely. These Issuer public
digital certificates are known as Certificate Authorities (CA). In order to verify your
certificate it is necessary to determine who the Issuer is and locate their CA
certificate. Using the public key in their certificate your certificate can now be
decrypted and the check-sum verified to ensure it has not been altered.

The private key is stored on the Vitalware server. Login access to the Vitalware server
is generally restricted to user vw, hence the key is not available for general access. The
public digital certificate is also stored on the Vitalware server. All CA certificates are
stored with the Vitalware client.

When a connection is initiated the Vitalware server sends its public digital certificate
to the Vitalware client. The client uses the CA certificates stored locally to verify that

Encrypted Connections

Encrypted Connections

3

the certificate is valid. The server's public digital certificate contains the full host
name of the Vitalware server machine. The Vitalware client checks the host name
against the machine to ensure it has not connected to a rogue server.

Once the Vitalware client has verified the server's public digital certificate it sends a
random number to the server encrypted using the public key in the server's digital
certificate. As the server is the only machine with the private key it can decrypt the
random number. The number is used as a key to a cipher (an encryption algorithm).
The cipher uses the key to encrypt all data between the client and server. As the client
and server are the only two machines which know the encryption key, data security
and integrity is guaranteed.

The complete steps required to establish an encrypted connection are:

• The Vitalware client connects to the Vitalware server requesting a secure
connection. The client provides a list of ciphers it supports.

• The Vitalware server selects the strongest cipher it supports from the client's list
and notifies the client.

• The Vitalware server sends its public digital certificate to the client. The
certificate contains the server's host name, the Issuer used to create the certificate
and the server's public encryption key.

• The Vitalware client looks up the CAs on its machine and verifies that the
server's certificate is valid.

• The Vitalware client generates a random number and encrypts it with the server's
public encryption key. The random number is sent to the server.

• The Vitalware server decrypts the random number using its private encryption
key (known only by the server).

• The random number is used as a key for the selected cipher. All data transferred
is now encrypted using the agreed cipher.

Vitalware allows public digital certificates to be:

• Self signed
A certificate that is verified by itself, that is the Issuer certificate is the same as
the certificate itself. Self signed certificates allow institutions to generate their
own digital certificates without the need to have them authenticated by an outside
authority. In order for the certificate to be verified the self signed certificate must
exist on both the client and server machines, the client version being the CA
certificate.

• Root signed
A certificate verified by one of a select set of "root" certificates. A root certificate
is distributed as part of the public key infrastructure and can be installed on client
machines to provide certificate verification.

Encrypted Connections

4

Encrypted Connections

• Chain signed
A certificate is verified by its Issuer certificate. The issuer certificate itself is
verified by its issuer certificate and so on until either a root or self signed
certificate is found.

Vitalware allows both the client and server machines to define a list of ciphers they
will support. When a connection is created the strongest (that is hardest to break)
cipher supported by both the client and server is selected. System administrators may
restrict the ciphers available on the server, forcing the client to use very strong
encryption only (e.g. 256 bit ciphers).

Encrypted Connections

Encrypted Connections

5

Requirements
Support for encrypted connections between the Vitalware client and server requires
the following software versions:

• Texpress 8.2.009 or later
• Vitalware 2.2.01 or later
• TexAPI 6.0.02 or later
• TexJDBC 0.9.6 or later

If any software is earlier than the version listed above, Vitalware will drop back to
using unencrypted connections. In order to use encrypted connections your System
Administrator must create the required keys (public/private) and public digital
certificate and install them on the Vitalware server. The CA certificates may also need
to be installed on the Vitalware client.

Encrypted Connections

6

Encrypted Connections

Vitalware server setup
The default installation of the Vitalware server does not have encrypted connections
enabled. The following files need to exist to enable encrypted connections:

• server.key Vitalware server's private key
• server.crt Vitalware server's public digital certificate
• ciphers list of ciphers the server will support

These files must be placed in a directory called certs under the Texpress etc
directory. For a standard Vitalware installation this corresponds to:

$EMUHOME/texpress/8.2/etc/certs.

If the files are not found, Vitalware will not attempt to use encrypted connections.

See Generating certificates (page 11) for details on how to create server.key and
server.crt.

See Configuring ciphers (page 23) for details about configuring ciphers.

Important!

The permissions on the server.key file should restrict access to read-only by user
root. All other permissions should be disabled, that is the file owner should be root
and the permissions should be r--------. If these permissions are not set, it is
possible that someone may access the file and so compromise the integrity of the
system!

As described in Requirements (page 5), the Vitalware server will drop back to an
unencrypted connection if versions earlier than 2.2.01 of the Vitalware client are used.
If you want to enforce encrypted connections the -s option should be added to the
texserver command configured in inetd/xinetd/svcs.

For example, the following inetd entry will accept encrypted connections only:
vwclient stream tcp nowait root /home/vw/client/bin/vwrun vwrun
texserver -avw -i -L -t60 -s

Encrypted Connections

Encrypted Connections

7

Vitalware client setup
The Vitalware client needs to verify the Vitalware server's public digital certificate for
an encrypted connection to be established. In order to verify the certificate the client
must be able to locate a valid CA (Certificate Authority) certificate for the Issuer of
the server's certificate. In the case of a certificate chain this must be the Issuer of the
first or "root" certificate. There are two locations used to hold CA certificates:

1. The first is on the Vitalware server and is used by programs using either TexAPI
or texapi.pm (a perl based interface to TexAPI). These programs include web
services.

2. The second is on the Vitalware client's machine and is used by the Windows
client.

CA certificates stored on the Vitalware server must be placed in the
$EMUPATH/etc/certs directory. The certificates should be stored in files with a .crt
extension. CA bundles are also supported. A bundle is simply the concatenation of a
number of certificates into one file. An optional ciphers file may also exist in the
certificates directory. If it exists, it should list the ciphers the Vitalware client is
willing to support.

See Configuring ciphers (page 23) for details about configuring ciphers.

CA certificates required by the Vitalware Windows client should be stored in the
certs directory under the location where the Vitalware executable (vw.exe) is
installed. As with CA certificates stored on the Vitalware server, the files must have a
.crt extension and CA bundles are supported. A ciphers file may also be supplied
defining the ciphers the client is willing to use.

Encrypted Connections

8

Encrypted Connections

TexJDBC setup
As with the Vitalware client, TexJDBC needs to be able to verify the Vitalware
server's public digital certificate. The required CA certificates must be stored in an
accessible Java Key Store (JKS). The system key store is located at
$JAVA_HOME/jre/lib/security/cacerts. A key store may have a password
associated with it. The password allows the integrity of the stored certificates to be
checked when they are accessed. The password is not required to access the key store.
The location of the key store used may be altered by setting the following system
properties:
javax.net.ssl.trustStore

The location of the Java Key Store file containing the CA certificates to use for
verifying the server's certificate.

javax.net.ssl.trustStorePassword
The password to use to check the integrity of the Java Key Store.

For example, if you want to use a key store located at
/home/vw/etc/certs/cacerts with a password of vwstore, you could invoke java
using:
java -Djavax.net.ssl.trustStore=/home/vw/etc/certs/cacerts -
Djavax.net.ssl.trustStorePassword=vwstore -jar application.jar

The location and password of the key store may also be specified using the
trustStore and trustStorePassword connection properties:
Properties props = new Properties();
props.setProperty("trustStore", "/home/vw/etc/certs/cacerts");
props.setProperty("trustStorePassword", "vwstore");
...
Connection conn = DriverManager.getConnection("jdbc:texpress:socket",
props);

The keytool command should be used to import a CA certificate into a java key
store:

keytool -importcert -alias alias -file certfile -storetype JKS -
keystore keystore

where:

 alias is an arbitrary unique name used to define the certificate within
the key store

 certfile is the file containing the CA certificate

 keystore is the location of the key store file into which the certificate is
imported

Encrypted Connections

Encrypted Connections

9

If keystore does not exist, a new key store is created. You will be prompted for the
password if the key store already exists, otherwise you will be asked to set the
password for the key store created.

To list the certificates in a key store use:

keytool -list -v -keystore keystore

where keystore is the location of the key store file.

Generating certificates

Encrypted Connections

S E C T I O N 2

Generating certificates
In this section we will look at how to generate a private/public key pair and how the
public digital signature is created for the public key. As mentioned earlier Vitalware
provides support for the following public certificates:

• Self signed
• Root signed
• Chain signed
Each of these types will be examined and appropriate commands provided for
OpenSSL (via the openssl command).

11

Generating certificates

12

Encrypted Connections

Self signed
A self signed certificate is one where the certificate Issuer is the same as the
certificate Subject. In other words the certificate is used to verify itself. In order for
the certificate to be trusted the certificate must be included with the client CA
certificates. Self signed certificates are used when you only need one certificate (for
example if you only have one Vitalware server and all clients connect to that server).
As the certificate is self signed it has not been verified by an external agency and so
should be used for internal use only. The steps required to generate the required files
are:

Step 1: Generate a private key
Create your private key. The key is a 1024 bit RSA key stored in PEM (Privacy
Enhanced Mail, a Base64 encoding of the key) format. It is readable as ASCII text:

openssl genrsa -out server.key 1024
Generating RSA private key, 1024 bit long modulus
..++++++
...++++++
e is 65537 (0x10001)

The file server.key now contains your private key. Remember to keep it safe!

Step 2: Generate public digital certificate
Using the private key generated in the first step the public digital certificate is
generated. A number of questions will be asked as part of the creation process. It is
important that the Common Name (CN) is set to the full host name of your Vitalware
server machine (e.g. vw.institution.org). Support for wild card host names is
provided by replacing any leading component of the name with an asterisk (e.g
*.institution.org, or *.org):

openssl req -new -x509 -key server.key -out server.crt -days 1095
You are about to be asked to enter information that will be
incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or
a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:AU
State or Province Name (full name) [Some-State]:Victoria
Locality Name (eg, city) []:Melbourne
Organization Name (eg, company) [Internet Widgits Pty Ltd]:KE
Software Pty Ltd
Organizational Unit Name (eg, section) []:

Generating certificates

Encrypted Connections

13

Common Name (eg, YOUR name) []:*.mel.kesoftware.com
Email Address []:info@mel.kesoftware.com

The resulting public digital certificate will be stored in PEM format in server.crt.

You can view the contents of the public certificate using:

openssl x509 -text -in server.crt
Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 f5:02:b4:7d:c3:5b:ad:a7
 Signature Algorithm: sha1WithRSAEncryption
 Issuer: C=AU, ST=Victoria, L=Melbourne, O=KE Software Pty
Ltd, CN=*.mel.kesoftware.com/emailAddress=info@mel.kesoftware.com
 Validity
 Not Before: Nov 19 11:47:46 2010 GMT
 Not After : Nov 18 11:47:46 2013 GMT
 Subject: C=AU, ST=Victoria, L=Melbourne, O=KE Software Pty
Ltd, CN=*.mel.kesoftware.com/emailAddress=info@mel.kesoftware.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:c4:c9:0f:04:8f:cd:98:5f:d9:c6:3b:00:54:b2:
 88:07:9b:06:4c:ea:f2:41:74:a3:68:7d:16:2a:de:
 cf:bb:cf:73:d5:97:f2:d8:4e:38:b1:7d:a8:94:48:
 5b:4a:fd:92:3b:45:8c:1b:ce:85:e5:18:2e:c1:60:
 db:4d:09:32:46:72:b4:a3:f1:f8:ab:96:4a:db:a5:
 4c:32:6d:83:ee:f9:02:4e:8f:f1:8b:ba:b4:62:b6:
 29:00:97:fb:3b:06:73:a2:56:5f:04:2c:79:3e:2e:
 f8:1b:eb:f5:8b:a6:cf:6b:56:bd:74:16:cb:53:a6:
 91:dd:ec:af:7a:77:40:b0:e5
 Exponent: 65537 (0x10001)
 X509v3 extensions:
 X509v3 Subject Key Identifier:

F6:72:9C:A4:91:C2:E2:51:70:26:05:FE:06:C3:E4:E9:4F:AF:A0:D5
 X509v3 Authority Key Identifier:

keyid:F6:72:9C:A4:91:C2:E2:51:70:26:05:FE:06:C3:E4:E9:4F:AF:A0:D5
 DirName:/C=AU/ST=Victoria/L=Melbourne/O=KE Software
Pty Ltd/CN=*.mel.kesoftware.com/emailAddress=info@mel.kesoftware.com
 serial:F5:02:B4:7D:C3:5B:AD:A7

 X509v3 Basic Constraints:
 CA:TRUE
 Signature Algorithm: sha1WithRSAEncryption
 4c:89:a2:57:d2:3b:3a:11:70:63:41:56:4e:b6:36:8e:28:c5:
 29:d7:7d:22:86:c4:43:90:4f:74:d1:31:32:7f:39:d8:f3:20:
 80:05:53:99:cd:17:28:b8:16:3b:a3:9a:84:ae:2c:08:f5:b0:
 11:6a:d5:ba:42:81:9d:e7:36:8f:39:9d:b4:15:13:52:23:fc:
 37:f6:5c:88:39:f9:9b:d1:e0:06:82:3f:e2:56:a3:f3:83:55:
 4d:8b:7c:69:a3:bc:fb:3a:66:18:f2:07:67:bc:39:54:28:c3:

Generating certificates

14

Encrypted Connections

 eb:3e:5c:d9:89:d8:ea:c7:d2:c4:fe:87:ee:24:e0:ce:c0:4f:
 d1:e7
-----BEGIN CERTIFICATE-----
MIIDtTCCAx6gAwIBAgIJAPUCtH3DW62nMA0GCSqGSIb3DQEBBQUAMIGZMQswCQYD
VQQGEwJBVTERMA8GA1UECBMIVmljdG9yaWExEjAQBgNVBAcTCU1lbGJvdXJuZTEc
MBoGA1UEChMTS0UgU29mdHdhcmUgUHR5IEx0ZDEdMBsGA1UEAxQUKi5tZWwua2Vz
b2Z0d2FyZS5jb20xJjAkBgkqhkiG9w0BCQEWF2luZm9AbWVsLmtlc29mdHdhcmUu
Y29tMB4XDTEwMTExOTExNDc0NloXDTEzMTExODExNDc0NlowgZkxCzAJBgNVBAYT
AkFVMREwDwYDVQQIEwhWaWN0b3JpYTESMBAGA1UEBxMJTWVsYm91cm5lMRwwGgYD
VQQKExNLRSBTb2Z0d2FyZSBQdHkgTHRkMR0wGwYDVQQDFBQqLm1lbC5rZXNvZnR3
YXJlLmNvbTEmMCQGCSqGSIb3DQEJARYXaW5mb0BtZWwua2Vzb2Z0d2FyZS5jb20w
gZ8wDQYJKoZIhvcNAQEBBQADgY0AMIGJAoGBAMTJDwSPzZhf2cY7AFSyiAebBkzq
8kF0o2h9Firez7vPc9WX8thOOLF9qJRIW0r9kjtFjBvOheUYLsFg200JMkZytKPx
+KuWStulTDJtg+75Ak6P8Yu6tGK2KQCX+zsGc6JWXwQseT4u+Bvr9Yumz2tWvXQW
y1Omkd3sr3p3QLDlAgMBAAGjggEBMIH+MB0GA1UdDgQWBBT2cpykkcLiUXAmBf4G
w+TpT6+g1TCBzgYDVR0jBIHGMIHDgBT2cpykkcLiUXAmBf4Gw+TpT6+g1aGBn6SB
nDCBmTELMAkGA1UEBhMCQVUxETAPBgNVBAgTCFZpY3RvcmlhMRIwEAYDVQQHEwlN
ZWxib3VybmUxHDAaBgNVBAoTE0tFIFNvZnR3YXJlIFB0eSBMdGQxHTAbBgNVBAMU
FCoubWVsLmtlc29mdHdhcmUuY29tMSYwJAYJKoZIhvcNAQkBFhdpbmZvQG1lbC5r
ZXNvZnR3YXJlLmNvbYIJAPUCtH3DW62nMAwGA1UdEwQFMAMBAf8wDQYJKoZIhvcN
AQEFBQADgYEATImiV9I7OhFwY0FWTrY2jijFKdd9IobEQ5BPdNExMn852PMggAVT
mc0XKLgWO6OahK4sCPWwEWrVukKBnec2jzmdtBUTUiP8N/ZciDn5m9HgBoI/4laj
84NVTYt8aaO8+zpmGPIHZ7w5VCjD6z5c2YnY6sfSxP6H7iTgzsBP0ec=
-----END CERTIFICATE-----

Step 3: Installing the files
We now have the two files we require:

• server.key - private key (must be kept safe)
• server.crt - self signed public digital certificate

On the Vitalware server these two files should be placed in the directory
$TEXHOME/etc/certs where $TEXHOME contains the location where Texpress is
installed. Suitable permissions should be set on the private key file:

mv server.key server.crt $TEXHOME/etc/certs
chmod 644 $TEXHOME/etc/certs/server.crt
su root
Password:
chown root $TEXHOME/etc/certs/server.key
chmod 400 $TEXHOME/etc/certs/server.key
exit
Next, the public certificate should be stored on the Vitalware server for use by API
based programs (TexAPI and texql.pm):

cp $TEXHOME/etc/certs/server.crt $EMUPATH/etc/certs
chmod 644 $EMUPATH/etc/certs/server.crt

Finally, on Vitalware Windows client machines the server.crt file must be placed
in a directory called certs in the same location as the Vitalware executable (vw.exe).

Generating certificates

Encrypted Connections

15

Now that all the required files are in the right place it is possible to connect using
encrypted connections. As mentioned earlier, the -s option for texserver (page 6)
may be used to enforce secure connections.

Generating certificates

16

Encrypted Connections

Root signed
A root signed certificate is a public digital certificate created and verified by an
external entity. You forward a certificate request to the external entity and they return
the signed public digital certificate. Root entities distribute their CA certificates
(really just a special form of self signed certificate) for all to use, allowing any
certificate signed by them to be verified. Root signed certificates are used when you
need a verifiable certificate for external use.

The steps required to generate the required files are:

Step 1: Generate a private key
Create your private key. The key is a 1024 bit RSA key stored in PEM (Privacy
Enhanced Mail, a Base64 encoding of the key) format. It is readable as ASCII text:

openssl genrsa -out server.key 1024
Generating RSA private key, 1024 bit long modulus
..++++++
...++++++
e is 65537 (0x10001)

The file server.key now contains your private key.

Step 2: Generate a certificate signing request
We use the private key generated in the first step to create a certificate signing request
(CSR). The file generated will contain the Subject information without an Issuer
being assigned, that is a certificate that has not yet been signed. The resulting file,
server.csr is then sent to an external entity for signing (e.g. Verisign).

openssl req -new -key server.key -out server.csr
You are about to be asked to enter information that will be
incorporated into your certificate request.
What you are about to enter is what is called a Distinguished Name or
a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:AU
State or Province Name (full name) [Some-State]:Victoria
Locality Name (eg, city) []:Melbourne
Organization Name (eg, company) [Internet Widgits Pty Ltd]:KE
Software Pty Ltd
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:*.mel.kesoftware.com
Email Address []:info@mel.kesoftware.com

Please enter the following 'extra' attributes

Generating certificates

Encrypted Connections

17

to be sent with your certificate request
A challenge password []:
An optional company name []:

Once the external entity has verified the Subject information in the request they will
generate a public digital certificate and return it to you. You should save the
certificate in a file called server.crt.

You can view the contents of the certificate signing request using:

openssl req -in server.csr -noout -text
Certificate Request:
 Data:
 Version: 0 (0x0)
 Subject: C=AU, ST=Victoria, L=Melbourne, O=KE Software Pty
Ltd, CN=*.mel.kesoftware.com/emailAddress=info@mel.kesoftware.com
 Subject Public Key Info:
 Public Key Algorithm: rsaEncryption
 RSA Public Key: (1024 bit)
 Modulus (1024 bit):
 00:c4:c9:0f:04:8f:cd:98:5f:d9:c6:3b:00:54:b2:
 88:07:9b:06:4c:ea:f2:41:74:a3:68:7d:16:2a:de:
 cf:bb:cf:73:d5:97:f2:d8:4e:38:b1:7d:a8:94:48:
 5b:4a:fd:92:3b:45:8c:1b:ce:85:e5:18:2e:c1:60:
 db:4d:09:32:46:72:b4:a3:f1:f8:ab:96:4a:db:a5:
 4c:32:6d:83:ee:f9:02:4e:8f:f1:8b:ba:b4:62:b6:
 29:00:97:fb:3b:06:73:a2:56:5f:04:2c:79:3e:2e:
 f8:1b:eb:f5:8b:a6:cf:6b:56:bd:74:16:cb:53:a6:
 91:dd:ec:af:7a:77:40:b0:e5
 Exponent: 65537 (0x10001)
 Attributes:
 a0:00
 Signature Algorithm: sha1WithRSAEncryption
 ae:e0:68:b8:fe:56:53:5e:f4:f4:e0:8d:19:2c:62:ee:ee:83:
 01:d2:8d:55:d0:2d:18:b8:18:0a:f2:5b:c4:a5:da:75:fd:ca:
 87:69:cd:3f:2e:7c:9e:a2:c2:b7:b1:4a:bd:85:2e:24:84:8d:
 cc:81:64:9d:0c:a4:ad:c4:c5:54:4d:cf:22:dc:08:51:3f:ed:
 6d:45:d6:91:e3:a6:c0:7e:2e:f0:0f:9e:be:70:ef:6a:f8:2c:
 93:59:8d:90:ca:23:c4:07:f9:ae:2c:09:03:fd:cf:43:d6:b7:
 8c:2e:48:96:28:98:5c:c3:e8:66:55:b3:4a:8d:bb:c8:d0:bb:
 c8:41

Step 3: Installing the files

The process for installing the two files server.key (private key) and server.crt
(public certificate) is exactly the same as for a self signed certificate (page 14).

Generating certificates

18

Encrypted Connections

Chain signed
A chain signed certificate is a certificate that is not self signed and is not root signed.
In order for the certificate to be verified, the Issuer of the certificate is verified, then
the Issuer of the Issuer certificate is verified and so on until either a self signed or root
signed certificate is encountered. If the top certificate is root signed, then the chain
signed certificate has the same level of verification as if the certificate had been root
signed directly. If the top certificate is self signed, then the level of verification is the
same as for any other self signed certificate. Chain signed certificates are used where
you will be generating multiple certificates and you only want to distribute one CA
certificate to verify them all. The only CA required is the top level self signed or root
signed certificate.

The steps below outline how to produce a self signed CA certificate that can then be
used to sign all other certificates generated. If you require a root signed CA
certificate, you need to generate a certificate signing request (as per the previous
section) and have the external entity generate the CA certificate.

Generating certificates

Encrypted Connections

19

Step 1: Generate a self signed CA certificate
The first step creates a self signed CA certificate. The CA certificate is the "root"
certificate used to sign (and hence verify) all other certificates we generate. The
public digital certificate of the CA certificate needs to be installed on client machines.
We only need to generate the CA certificate once.

echo "01" > ca.srl
openssl req -new -x509 -nodes -extensions v3_ca -keyout ca.key -out ca.crt -days
365
Generating a 1024 bit RSA private key
................................++++++
.........++++++
writing new private key to 'ca.key'

You are about to be asked to enter information that will be
incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or
a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:AU
State or Province Name (full name) [Some-State]:Victoria
Locality Name (eg, city) []:Melbourne
Organization Name (eg, company) [Internet Widgits Pty Ltd]:KE
Software Pty Ltd
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:KE Software CA certificate
Email Address []:info@mel.kesoftware.com

Step 2: Generate a private key
Once we have the CA certificate we can generate a new certificate. The first step is to
generate the private key:

openssl genrsa -out server.key 1024
Generating RSA private key, 1024 bit long modulus
.++++++
..++++++
e is 65537 (0x10001)

Step 3: Generate a certificate signing request
We use the private key generated in the previous step to create a certificate signing
request (CSR). The file generated will contain the Subject information without an
Issuer being assigned, that is a certificate that has not been signed. Make sure Common
Name is set to the host name of your Vitalware server.

Generating certificates

20

Encrypted Connections

openssl req -new -key server.key -out server.csr
You are about to be asked to enter information that will be
incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or
a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:AU
State or Province Name (full name) [Some-State]:Victoria
Locality Name (eg, city) []:Melbourne
Organization Name (eg, company) [Internet Widgits Pty Ltd]:KE
Software Pty Ltd
Organizational Unit Name (eg, section) []:
Common Name (eg, YOUR name) []:*.mel.kesoftware.com
Email Address []:info@mel.kesoftware.com

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

Step 4: Sign the certificate with your CA certificate
Using our CA certificate we sign the CSR to produce our public digital certificate:

openssl x509 -CA ca.crt -CAkey ca.key -CAserial ca.srl -req -in server.csr -out
server.crt -days 365
Signature ok
subject=/C=AU/ST=Victoria/L=Melbourne/O=KE Software Pty
Ltd/CN=*.mel.kesoftware.com/emailAddress=info@mel.kesoftware.com
Getting CA Private Key

Step 5: Creating the certificate chain
A certificate chain is simply the concatenation of all the signing public certificates
from the certificate just generated to the root certificate (there may be any number of
intermediate certificates). As we only have one CA in the chain in this example we do
not need to concatenate the certificates, however if more than one CA has been used
all certificates in the chain must be placed in one file. While not required for this
example we will concatenate the certificates anyway (it does not hurt):

cat server.crt ca.crt > chain.crt

Generating certificates

Encrypted Connections

21

Step 6: Installing the files
First we install the private key and chain certificates on the Vitalware server:

mv server.key $TEXHOME/etc/certs/server.key
mv chain.crt $TEXHOME/etc/certs/server.crt
chmod 644 $TEXHOME/etc/certs/server.crt
su root
Password:
chown root $TEXHOME/etc/certs/server.key
chmod 400 $TEXHOME/etc/certs/server.key
exit

Next, the public CA certificate should be stored on the Vitalware server for use by
API based programs (TexAPI and texql.pm):

cp ca.crt $EMUPATH/etc/certs
chmod 644 $EMUPATH/etc/certs/ca.crt

Finally, on Vitalware Windows client machines the ca.crt file must be placed in a
directory called certs in the same location as the Vitalware executable (vw.exe).

Now that the CA certificate is installed on the Vitalware clients there is no need to
add any further files when generating new certificates signed by the same CA
certificate.

Configuring ciphers

Encrypted Connections

S E C T I O N 3

Configuring ciphers
When an encrypted connection is formed the client and server negotiate to determine
the highest level of encryption on which they can both agree. A list of ciphers may be
set for the server and/or client allowing System Administrators to enforce a certain
level of encryption. As the strongest cipher is chosen as part of the connection
negotiation it is not necessary to restrict the list of ciphers used in most cases. The
ciphers to use can be set at three levels:

• Server
• TexAPI/texapi.pm
• TexJDBC

23

Configuring ciphers

24

Encrypted Connections

Server
The list of ciphers the server will support is found in a file called ciphers. The file is
located in the $TEXHOME/etc/certs directory. The format of the file is a colon
separated list of cipher names. For details on what ciphers are supported and the exact
format of the setting see the Ciphers section of the OpenSSL documentation.

For example, to enforce the use of MD5 ciphers the following cipher file could be
used:

The allowable ciphers for use between the client and server are
defined by the last line in this file. See ciphers(1) in OpenSSL
(http://www.openssl.org/docs/apps/ciphers.html) for the format of
statement detailing the ciphers to use.

MD5

TexAPI/texapi.pm
To set the ciphers supported by the Windows client and client side programs using
texapi.pm the TEXCIPHERS environment variable should be used. For example, to
enforce the use of MD5 ciphers the following setting could be used:
TEXCIPHERS="MD5"
export TEXCIPHERS

It is also possible to set the ciphers when using TexAPI directly. The Ciphers
member of the TEXSESSINFO structure may be used:
TEXSESSINFO info;
TEXSESSION session;

...
info.Ciphers = "MD5";
...
TexSessConnect(&info, &session);
...

For texapi.pm the Ciphers key is used:

my $session = ke::texapi->new(
{
 ...
 Ciphers => 'MD5',
 ...
});

Configuring ciphers

Encrypted Connections

25

TexJDBC
When using TexJDBC the ciphers connection property may be set to restrict the
ciphers used for a connection:
Properties props = new Properties();

props.setProperty("ciphers", "MD5");
...

Connection conn =
DriverManager.getConnection("jdbc:texpress:socket", props);

Common Errors

Encrypted Connections

S E C T I O N 4

Common Errors
When configuring the use of encrypted connections a number of common errors may
occur. In this section a description of these errors is given, along with possible
solutions.

27

Common Errors

28

Client does not support SSL
The System Administrator may configure the Vitalware server to accept encrypted
connections only. The -s option for texserver will force the server to only accept
connections where encryption is enabled. If the Vitalware client is a version prior to
2.2.01, then encryption is not supported and the following error message is displayed:

The solution is to upgrade the Vitalware client to version 2.2.01 or greater.

Server certificates not installed
If the System Administrator has turned on the -s option for texserver, thus forcing
encrypted connections, and the server side certificates (server.crt and server.key)
are not installed, the following error message is displayed:

The solution is to generate the private key (server.key) and public digital certificate
(server.crt) and place them in the correct location ($TEXHOME/etc/certs).

Encrypted Connections

Common Errors

Encrypted Connections

Server/Client protocol error
The initiation of an encrypted connection involves a handshake between the client and
server programs. If an error occurs as part of the handshake, the following message is
displayed:

There are many reasons why a protocol error may occur. The most common are:

• The private key file $TEXHOME/etc/certs/server.key cannot be read. The
error implies the contents of the private key file are corrupted.

• The public digital certificate file $TEXHOME/etc/certs/server.crt cannot be
read. The error implies the contents of the public certificate file are corrupted.

• A private key/public certificate mismatch. The public digital key server.crt
was not generated using the private key found in server.key. Either the private
key or public certificate is incorrect.

• An acceptable cipher cannot be found. The client and server cannot agree on a
cipher to use for the connection encryption. The server ciphers file should be
altered to match a client cipher or vice versa.

Server side debugging may be required to determine the exact cause of the error. The
Texpress debug flags s15,16 will output the reason for the protocol error. For details
on how to set Texpress debug flags please contact KE Software support.

Cannot verify certificate
In order for the client to verify the server's certificate the client must have a copy of
the server's top level public CA certificate. If the top level certificate is not installed
on the client, the following error is displayed:

The solution is to install the top level CA certificate on the client. The certificate

29

Common Errors

30

should be placed in a directory called certs located in the same place as the
Vitalware client executable.

Bad host name
The Common Name field of the server's public digital certificate must contain the host
name of the Vitalware server. Wild cards are supported using the asterisk character. If
the Common Name field of the server's certificate does not match the host name to
which the client is connected, the following error is displayed:

The solution is to fix up your DNS so that the host name of the Vitalware server
matches the host name stored in the server's certificate. If this is not possible, a new
server certificate should be generated with the correct host name.

Encrypted Connections

Index
B

Bad host name • 30
C

Cannot verify certificate • 29

Chain signed • 18

Client does not support SSL • 28

Common Errors • 27

Configuring ciphers • 6, 7, 23
E

Encrypted Connections • 1
G

Generating certificates • 6, 11
H

How it works • 2
I

Important! • 6
R

Requirements • 5, 6

Root signed • 16
S

Self signed • 12

Server • 24

Server certificates not installed • 28

Server/Client protocol error • 29

Step 1
Generate a private key • 12, 16
Generate a self signed CA certificate • 19

Step 2
Generate a certificate signing request • 16
Generate a private key • 19
Generate public digital certificate • 12

Step 3
Generate a certificate signing request • 19

Installing the files • 14, 17

Step 4
Sign the certificate with your CA

certificate • 20

Step 5
Creating the certificate chain • 20

Step 6
Installing the files • 20

T

TexAPI/texapi.pm • 24

TexJDBC • 25

TexJDBC setup • 8
V

Vitalware client setup • 7

Vitalware server setup • 6, 15

	How it works
	Requirements
	Vitalware server setup
	Important!

	Vitalware client setup
	TexJDBC setup
	Self signed
	Step 1: Generate a private key
	Step 2: Generate public digital certificate
	Step 3: Installing the files

	Root signed
	Step 1: Generate a private key
	Step 2: Generate a certificate signing request
	Step 3: Installing the files

	Chain signed
	Step 1: Generate a self signed CA certificate
	Step 2: Generate a private key
	Step 3: Generate a certificate signing request
	Step 4: Sign the certificate with your CA certificate
	Step 5: Creating the certificate chain
	Step 6: Installing the files

	Server
	TexAPI/texapi.pm
	TexJDBC
	Client does not support SSL
	Server certificates not installed
	Server/Client protocol error
	Cannot verify certificate
	Bad host name
	Index

